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A new nonlinear model for large deflections of a
beam is proposed. It comprises the Euler–Bernoulli
boundary value problem for the deflection and a
nonlinear integral condition. When bending does
not alter the beam length, this condition guarantees
that the deflected beam has the original length and
fixes the horizontal displacement of the free end.
The numerical results are in good agreement with
the ones provided by the elastica model. Dynamic
and two-dimensional generalizations of this nonlinear
one-dimensional static model are also discussed.
The model problem for an inextensible rectangular
Kirchhoff plate, when one side is clamped, the
opposite one is subjected to a shear force, and
the others are free of moments and forces, is
reduced to a singular integral equation with two
fixed singularities. The singularities of the unknown
function are examined, and a series-form solution
is derived by the collocation method in terms of
the associated Jacobi polynomials. The procedure
requires solving an infinite system of linear algebraic
equations for the expansion coefficients subject to the
inextensibility condition.

1. Introduction
The background motivation of this study is provided
by modelling of bioinspired microsensors as hair-like
flexible micropillars and pillar arrays. The sensors
serve for the wall shear stress measurements in the
boundary layer for laminar and turbulent flow. For
these measurements, some techniques based on optical
imaging and image processing need the values of the
displacements of the hair-like sensor tip [1,2]. The
procedure requires the solution of the dynamic linear
Euler–Bernoulli (EB) beam equation with allowance for
damping. Some other measurement techniques take the

2014 The Author(s) Published by the Royal Society. All rights reserved.
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sensor’s output as the bending moment at the base and employ a linear [3] or nonlinear
[4] viscoelastic Kelvin–Voigt model of an EB beam coupled to an unsteady non-uniform flow
environment. Both models, the former linear one and the latter nonlinear model, have a good
accuracy for small deflections only.

It is known that the solution for large deflections of a beam cannot be obtained from the
elementary linear EB theory. This theory neglects the square of the curvature derivative and
disregards shortening of the moment arm due to the deflection. If the material of the beam
remains linear, and the deflections are large, then the exact differential equation D dφ/ds = M
needs to be integrated. Here, φ(s) is the deflection angle, dφ/ds is the curvature, M is the
moment and D is the flexural rigidity. The exact slope of the elastic curve recovered from this
equation is called the elastica [5]. When one of the beam ends is clamped, the other is free and
a load is applied to the free end, the exact solution was found by Barten [6,7] and Bisshopf &
Drucker [8]. The case of a uniformly distributed load was approximately treated by Rohde [9].
Frisch-Fay [10] analysed the case when loading is modelled by a system of n concentrated
loads and reduced the problem to a system of 2n − 1 transcendental equations. Wang et al. [11]
presented a series-form solution for the case when a load is applied to the free end (the Barten
problem). To the author’s knowledge, exact solutions of the elastica model for an arbitrary
continuous load and its generalizations for the dynamic and two-dimensional cases remain out
of reach.

The main goal of this paper is to propose and analyse an alternative nonlinear model which is
applicable for large deflections and may be used not only in the static but also in the dynamic case
and for an arbitrary load. In addition, as some sensors are manufactured as rectangular plates [12],
we aim to develop an accurate nonlinear plate bending model when bending does not alter the
plate size.

In §2, we consider the Frisch-Fay elastica model problem for n concentrated loads, reduce
it to a single transcendental equation and solve it numerically. In §3, we propose the static
and dynamic nonlinear models for an EB beam. The problems are solved exactly for any
continuous load. We show that the solution for an EB beam when bending does not alter
the beam length provides the same level of accuracy for large deflections as the elastica
model does. However, the solution procedure is simpler, and the model admits the dynamic
generalization. In §4, we analyse bending of a Kirchhoff rectangular plate when one side is
clamped, the opposite one is subjected to a shear force and the others are free of moments
and forces. On employing the method of finite integral transforms, we derive a governing
singular integral equation with two fixed singularities. The singularities of the solution
are studied, and an approximate series-form solution is obtained in terms of the Jacobi
polynomials. The series coefficients solve an infinite linear algebraic system. The abscissas
of the deflected points of the plate are fixed by inversion of the integral inextensibility
condition.

2. Large deflection of a beam: the elastica model
A beam of length L is subjected to an arbitrary distributed load modelled by a system of n vertical
concentrated loads P1, . . . , Pn. The loads Pj are applied at some points Aj (j = 1, . . . , n), A0 and An

are the clamped and free ends of the beam, and the flexural rigidity of the beam is a piecewise
constant function, D(x) = Dj, x ∈ Aj−1Aj (x is the horizontal coordinate), Dj = EjIj, Ej is the Young
modulus, and Ij is the moment of inertia. The main assumptions of the model are (i) the curvature
is proportional to the bending moment (the Bernoulli–Euler theorem), and (ii) bending does not
alter the beam length.

We choose downward deflections to be positive and denote the slope angle by φ(s) and the arc
length by s. Let R and M be the total reaction and the moment at the clamped end. Taking into
account the shortening of the moment arm as the points Aj (j = 1, . . . , n) deflect, we can define the
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bending moments Mj on the segment Aj−1Aj as

M1 = M − Rx =
n∑

i=1

Pi(Li −�i − x), x ∈ A0A1,

Mj = M − Rx +
j−1∑
i=1

Pi(x − Li +�i) =
n∑

i=j

Pi(Li −�i − x), x ∈ Aj−1Aj

and Mn = M − Rx +
n−1∑
i=1

Pi(x − Li +�i) = Pn(Ln −�n − x), x ∈ An−1An.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.1)

Here, Lj is the length of the arc A0Aj, and �j is the horizontal displacement of the point Aj (the
displacement to the left is positive). On the other hand, as the bending moment is proportional to
the beam curvature dφ/ds, we have another system of equations

Dj
dφ
ds

= Mj, s ∈ Aj−1Aj, j = 1, . . . , n. (2.2)

On differentiating these equations with respect to s, using the relations (2.1) and dx/ds = cosφ,
multiplying the equations obtained by dφ/ds and integrating them afterwards, we have

1
2

(
dφ
ds

)2
= Qj

Dj
(sin φ̂j − sinφ), s ∈ Aj−1Aj. (2.3)

Here, φ̂j ∈ [0,π/2) is a free constant due to integration, sin φ̂j > sinφ for s ∈ Aj−1Aj, and

Qj =
n∑

i=j

Pi, j = 1, . . . , n. (2.4)

Let lj be the length of the arc Aj−1Aj and denote αj = lj
√

Qj/Dj. As the bending does not alter the

beam length, lj and αj are constants, and from (2.3) we have

αj = 1√
2

∫φj

φj−1

dφ√
sin φ̂j − sinφ

, (2.5)

where φj ∈ [0,π/2) is the slope angle at the point Aj. To determine the unknowns φ̂j and φj, we
introduce new parameters kj and θj and a function θ ,

kj =
√

1 + sin φ̂j

2
, sin θ = 1

kj

√
1 + sinφ

2
, s ∈ Aj−1Aj

and θj = sin−1

⎛
⎝ 1

kj

√
1 + sinφj

2

⎞
⎠ , j = 1, . . . , n, θ0 = sin−1 1

k1
√

2
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.6)

As the curvature dφ/ds at the point An vanishes, we have φ̂n = φn and θn = π/2. In the new
notations, the integrals αj in (2.5) can be written as

αj =
∫ θj

θj−1

dθ√
1 − k2

j sin2 θ
. (2.7)

This brings us the first n equations for the 2n − 1 unknowns θj ( j = 1, . . . , n − 1) and kj ( j = 1, . . . , n)

∫ θj−1

0

dθ√
1 − k2

j sin2 θ
= −αj +

∫ θj

0

dθ√
1 − k2

j sin2 θ
, (2.8)
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or, equivalently, by inverting the elliptic integrals,

sin θj−1 = sn(−αj + F(θj, kj)), j = 1, . . . , n. (2.9)

Here, sn(x) and F(x, k) are the elliptic sine and elliptic integral of the first kind, respectively.
The continuity of curvature at the points Aj (j = 1, . . . , n − 1) yields us n − 1 extra conditions,

dφ
ds

∣∣∣∣
φ−

j

= dφ
ds

∣∣∣∣
φ+

j

, j = 1, . . . , n − 1. (2.10)

In view of (2.3), they are equivalent to the equations

Qj(sin φ̂j − sinφj) = Qj+1(sin φ̂j+1 − sinφj), j = 1, . . . , n − 1. (2.11)

These equations can conveniently be rewritten as

kj = kj+1

√
Qj+1

Qj − Pj sin2 θj
, j = 1, . . . , n − 1. (2.12)

We assert that the system of 2n − 1 equations we derived form recurrence relations for the
parameters kj and θj. Given θn = π/2 define

θn−1 = sin−1[sn(−αn + F(θn, kn))] (2.13)

and

kn−1 = kn

√
Qn

Qn−1 − Pn−1 sin2 θn−1
(2.14)

as functions of kn. Then continue this by determining sequently for j = n − 1, n − 2, . . . , 2,

θj−1 = sin−1[sn(−αj + F(θj, kj))] and kj−1 = kj

√
Qj

Qj−1 − Pj−1 sin2 θj−1
. (2.15)

The last step, j = 1, yields

θ0 = sin−1[sn(−α1 + F(θ1, k1))]. (2.16)

Note that F(θn, kn) = K(kn) is the complete elliptic integral of the first kind. Now, as θ0 is defined
by (2.6), and all the parameters, k1, . . . , kn−1 and θ1, . . . , θn−1, are expressed through the single
parameter kn, we deduce a single transcendental equation with respect to kn. It reads

k1(kn)sn(−α1 + F(θ1(kn), k1(kn))) = 1√
2

. (2.17)

On having determined kn from this equation numerically, we can recover the other unknown
parameters by equations (2.13)–(2.16). In the particular case n = 1, when a concentrated vertical
load P1 = P is applied to the free end of the beam, and the rigidity is a constant D, the
transcendental equation with respect to the single parameter k1 = k has the form

ksn(α + K(k)) = 1√
2

, (2.18)

where α= L
√

P/D. Here, we used the property of the elliptic sine sn(−α + K) = sn(α + K).
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Denote next the deflection of the point Aj with respect to the previous point Aj−1 by δj. Then
by integrating the equation

dy
dφ

√
2Qj

Dj
(sin φ̂j − sinφ) = sinφ, (2.19)

on the interval [φj−1,φj], we determine

δj =
√

Dj

2Qj

∫φj

φj−1

sinφ dφ√
sin φ̂j − sinφ

. (2.20)

This can be expressed through the elliptic integrals of the second kind

δj = lj

{
1 − 2

αj
[E(θj, kj) − E(θj−1, kj)]

}
, j = 1, . . . , n. (2.21)

By summing up these quantities, we find the deflection δ of the free end An with respect to
the origin

δ =
n∑

j=1

δj. (2.22)

The horizontal displacements �̃j of the point Aj relatively to the point Aj−1 can be determined by
integrating the equation

dx =
√

Dj

2Qj

cosφ dφ√
sin φ̂j − sinφj

(2.23)

on the interval [φj−1,φj]. This ultimately gives

�̃j = lj − 2kj

√
Dj

Qj
(cos θj−1 − cos θj), (2.24)

and the horizontal displacement of the free end is

�= L − 2
n∑

j=1

kj

√
Dj

Qj
(cos θj−1 − cos θj). (2.25)

Finally, we write down the bending moment at the origin, M1 = M,

M =
n∑

j=1

Pj(Lj −�j) =
√

2Q1D1 sin φ̂1. (2.26)

As sin φ̂1 = 2k2
1 − 1, we obtain

M|x=0 =
√

2Q1D1(2k2
1 − 1). (2.27)

Figures 1 and 2 show the results of calculations of the deflection and the horizontal
displacement of the free end versus the parameter α2

0 . In figure 1, the beam is uniform, Dj = D0,
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d/L (elastica)

D/L (elastica)
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0

Figure 1. The dimensionless deflection and the horizontal displacement of the free end for the elastica and the classical linear
EB models when Dj = D0, Pj = P0, j = 1, . . . , n, n= 20 andα0 = L

√
P0/D0.

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

d /L (non-uniform beam)

D/L (non-uniform beam)

D/L (uniform beam)

d /L (uniform beam)

a2
0

Figure 2. The elastica model: dimensionless deflection and the horizontal displacement of the free end for a uniform,
Dj = D0, and non-uniform, Dj = D0(1 − 0.75j/20), cross sections when Pj = P0, Aj = Aj(j/n), j = 1, . . . , n, n= 10 and
α0 = L

√
P0/D0.

loading is modelled by the set of concentrated loads Pj = P0 (j = 1, 2, . . . , 20) and α0 = L
√

P0/D0.
The linear EB model is governed by the boundary value problem

D
d4w
dx4 =

n−1∑
j=1

Pjδ(x − Lj), 0< x< L,

w(0) = 0, w′(0) = 0, w′′(L) = 0, Dw′′′(L) = −Pn,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.28)
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

elastica

linear EB model

a2
0

M

Figure 3. The bending momentM at x = 0 when Dj = D0, Pj = P0, j = 1, . . . , n, n= 20 andα0 = L
√
P0/D0.

where δ(·) is the Dirac function. Its solution yields the deflection of the free end x = L

δ = PnL3

3D
+ 1

2D

n−1∑
j=1

PjL
2
j

(
L − Lj

3

)
(2.29)

and bending moment at the clamped end

M =
n−1∑
j=1

PjLj + PnL. (2.30)

The horizontal displacement identically equals zero in the linear theory.
It is observed from figures 1 and 3 that the difference between the deflection, the horizontal

displacement of the free end and the moment at x = 0 computed according to the elastica and the
linear theory drastically increase as the parameter α grows. Figure 2 shows that if the rigidity of
the beam, D(x), is a decreasing function, then the deflection and horizontal displacement of the
free end are greater than the ones for a beam with the constant rigidity D(0).

3. Nonlinear model for an Euler–Bernoulli beam

(a) Static model
Assume that the left end of a beam 0< x< L is clamped, its right end is subjected to a concentrated
vertical load Pn, while the beam itself is subjected to a distributed normal load p(x). The bending
rigidity is constant, and the deflection w(x) is governed by the EB equation. The main assumption
of this model is that bending may alter the beam length, and its new length, L̃ ≥ L, is prescribed.
We thus aim to find the function w(x) that solves the following boundary-value problem:

DwIV(x) = q(x), 0< x< L,

w(0) = 0, w′(0) = 0, w′′(L) = 0, −Dw′′′(L) = Pn,

}
(3.1)

and satisfies the condition ∫ x̃

0

√
1 + [w′(x)]2 dx = L̃, (3.2)
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where x̃ = L −� is the abscissa of the free end of the bent beam, and � is a parameter to be
determined. In the particular case, when bending does not alter the length of the beam, L̃ = L. The
solution to the problem (3.1) can be easily found,

w(x) = Pnx2

6D
(3L − x) + 1

D

∫L

0
G(x, ξ )q(ξ ) dξ , (3.3)

where G(x, ξ ) is the Green function defined by

6G(x, ξ ) =
{
ξ2(3x − ξ ), x ≥ ξ ,

x2(3ξ − x), x ≤ ξ .
(3.4)

The classical beam theory assumes that x̃ = L and therefore deals with a beam whose bending
results in the extension of the beam. As x̃ = L, the altered length L̃ attains its maximum, L∗, which
can be computed by the formula

L∗ =
∫L

0

√
1 + [w′(x)]2 dx. (3.5)

If the parameter L̃ is prescribed and L ≤ L̃< L∗, then the parameter x̃ is unknown and has to be
determined from condition (3.2) which can be specified to read

∫ x̂

0

√
1 + ŵ2(η) dη= l, (3.6)

where

ŵ(η) = α̃2

l2

[
η
(

1 − η

2

)
+ L

Pn

∫ 1

0
Ĝ(η, τ )q(Lτ ) dτ

]

and 2Ĝ(η, τ ) =
{
τ 2, η≥ τ ,

η(2τ − η), η≤ τ ,
x̂ = x̃

L
, l = L̃

L
, α̃ = L̃

√
Pn

D
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.7)

In the particular case q(x) ≡ 0, condition (3.6) is equivalent to the inversion of the elliptic integral

∫ x̂

0

√
η4 − 4η3 + 4η2 + 4l4

α̃4 dη= 2l3

α̃2 . (3.8)

On solving numerically the transcendental equation (3.6) (equation (3.8) if q ≡ 0) for x̂, we can
compute the actual deflection of the free end by employing formula (3.3) for x = x̂L. The bending
moment at the clamped end due to the shortening of the moment arm is obviously smaller than
in the classical EB theory. In the case when q ≡ 0, M = Pnx̂L.

The profile of the deflected beam can be reconstructed as follows. We split the beam into n
equal segments xi−1xi, i = 1, . . . , n, x0 = 0 and xi = iL/n. Assume that bending does not alter the
length li of each segment xi−1xi. The abscissa, x̃i, of the deflected point xi is determined by solving
the transcendental equation

∫ x̃i

0

√
1 + [w′(x)]2 dx = Li, Li =

i∑
j=1

lj, i = 1, . . . , n. (3.9)

After we have found the abscissas x̃i, we employ them to recover the deflections w(x̃i) by
formula (3.3).

To compare the nonlinear EB model with the elastica model previously analysed, we consider
the case when the beam is inextensible, L̃ = L, the load Pn is applied to the free end only,
P1 = · · · = Pn−1 = 0 and q(x) ≡ 0. In this case, all the parameters ki of the elastica model are the
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elastica

nonlinear EB model

a2

d/
L

Figure 4. The dimensionless deflection of the free end x = L versusα2 = L2Pn/D in the case P1 = · · · = Pn−1 = 0, Pn 	= 0
for the elastica and nonlinear EB models.

same, k1 = · · · = kn = k. To recover the coordinates (x∗
i , δ∗i ) of the deflected points Ai, we need to

solve the system of recurrence relations (2.13) for θi, the transcendental equation (2.17) for k and
determine δi and �̃i by (2.21) and (2.24). Then

δ∗i =
i∑

j=1

δj and x∗
i =

i∑
j=1

(lj − �̃j). (3.10)

In the case of the nonlinear EB model, the coordinates (x̃i, w(x̃i)) of the deflected points (xi, 0) are
determined by inversion of the elliptic integral

∫ x̃i/L

0

√
1 + α4η2

(
1 − η

2

)2
dη= Li, (3.11)

and by the formula

w(x̃i) = α2x̃2
i

6L2 (3L − x̃i), i = 1, . . . , n, α = L

√
Pn

D
. (3.12)

Our calculations implemented for the elastica and the nonlinear EB models for a uniform
beam when the load is applied to the free end only are presented in figures 4–6. The discrepancy
between the deflection of the free end (figure 4) becomes notable only for large values of the
parameter α = L

√
Pn/D. Figure 5 shows the ratio of the bending moments Me and MEB at the

clamped end associated with the elastica and our nonlinear model, respectively. It is seen that for
0<α2 < 20, Me/MEB ∈ (0.985, 1.005). The profile of the bending beam is presented in figure 6 for
the case α= 1. The solid line corresponds to the elastica curve. It was recovered by computing the
coordinates of the points Aj by formulae (3.10). The dashed line in Figure 6 is recovered by the
nonlinear EB model with the horizontal and vertical coordinates being computed from (3.11) and
(3.12), respectively. Again, the nonlinear theory is in good agreement with the elastica model.

(b) Nonlinear dynamic model
A dynamic analogue of the nonlinear model for an inextensible EB beam 0< x< L reads
as follows.
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Figure 5. The ratio Me/MEB versus α2 = L2Pn/D, where Me and MEB are the bending moments at x = 0 in the case of
concentrated load Pn applied at x = L for the elastica and nonlinear EB models, respectively.
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Figure 6. The beam profile in the case P1 = · · · = Pn−1 = 0, Pn 	= 0 for the elastica and nonlinear EB models whenα= 1.

Find a function w(x, t) which solves the EB equation

D
∂4w(x, t)
∂x4 = −m

∂2w(x, t)
∂t2 + q(x, t), 0< x< L, t> 0, (3.13)

subject to the boundary conditions

w(0, t) = 0,
∂w
∂x

(0, t) = 0,
∂2w
∂x2 (L, t) = 0, −D

∂3w
∂x3 (L, t) = P(t), t ≥ 0, (3.14)

the initial conditions

w(x, 0) = 0,
∂w
∂t

(x, 0) = 0, 0 ≤ x ≤ L (3.15)
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and the condition of inextensibility

∫ x̃(t)

0

√
1 +

[
∂w(x, t)
∂x

]2
dx = L, t ≥ 0. (3.16)

Here, m is the mass per unit length, and x̃(t) is to be determined. To avoid unnecessary
technicalities and preserve the main feature of the model, the condition of the inextensibility,
we assume that q(x, t) ≡ 0 and P(t) = Pn sinωt (ω is the frequency of vibration). We next split
w(x, t) = v(x) sinωt and analyse the following nonlinear harmonic vibration model

D
d4v(x)

dx4 − β4v(x) = 0, 0< x< L,

v(0) = 0,
dv
dx

(0) = 0,
d2v

dx2 (L) = 0, −D
d3v

dx3 (L) = Pn

and
∫ x̃(t)

0

√
1 +

[
dv(x)

dx

]2
sin2 ωt dx = L, t ≥ 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.17)

Here, β = (mω2/D)1/4. The function v(x) can be easily found

v(x) = Pn

2β3D(1 + cosβL coshβL)
[sinβ(x − L) + sinhβ(L − x)

− cosβx sinhβL + sinβL coshβx + sinβx coshβL − cosβL sinhβx]. (3.18)

Upon substituting the derivative of the function v(t) into condition (3.17) and solving the
transcendental equation with respect to x̃(t), we determine the actual moment arm L̃(t) = L − x̃(t).
The quantity of interest, the bending moment at the clamped end M(t) = Dv′′(0) sinωt, therefore
has the form

M(t) = Pn sinωt
Dβ

sin[βL̃(t)] + sinh[βL̃(t)]

1 + cos[βL̃(t)] cosh[βL̃(t)]
. (3.19)

Note that the vibration frequencies, the zeros of the function cosβL coshβL + 1, coincide with
those defined by the classical liner EB model. What is different is the moment M(t), the horizontal
and vertical displacements, and therefore the profile w(x, t) of the beam.

4. Bending of a plate

(a) Formulation
The upper surface of a thin plate Π = {0< x< L, −b< y< b, −h/2< z< h/2} is subjected to a
normal load q(x, y), |∂q/∂y| 
 |q|, (x, y) ∈Π . The side {x = 0, −b< y< b} is clamped, a load P(y) is
applied to the side {x = L, −b< y< b}, whereas the other two sides of the plate are free of moments
and forces.

We assume that (i) the normal stress σz in the middle surface is small enough to be neglected,
(ii) plane cross sections normal to the middle surface remain plane and normal to the middle
surface after deflection (the Kirchhoff hypothesis), (iii) the deformations in the middle surface
are negligible, (iv) the deflection variation in the y-direction is much smaller than that in the
x-direction, and (v) bending does not alter the plate length L.

To formulate the boundary conditions, we need the expressions for the bending moments with
respect to the axes y, M1 and x, M2,

M1 = −D

(
∂2w
∂x2 + ν

∂2w
∂y2

)
and M2 = −D

(
∂2w
∂y2 + ν

∂2w
∂x2

)
, (4.1)

the shear forces N1 and N2 acting on the sides x = L and y = ±b,

N1 = −D
∂

∂x
�w and N2 = −D

∂

∂y
�w, (4.2)

 on October 21, 2014rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


12

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20140064

...................................................

and the torsion moments applied on the sides x = L and y = ±b,

H1 = −D(1 − ν)
∂2w
∂x∂y

and H2 = D(1 − ν)
∂2w
∂x∂y

. (4.3)

Here, D = Eh3[12(1 − ν2)]−1 is the cylindrical rigidity of the plate, E is the Young modulus and ν
is the Poisson ratio. The free edge boundary conditions on the sides y = ±b generally excepted
in the Kirchhoff theory of plates require M2 = 0 and N2 + ∂H2/∂x = 0. The second boundary
condition takes into account the shear force due to the presence of the stresses τyz and the
torsion moment due to the tangential stresses τxy. Also, it allows to avoid dealing with the three
boundary conditions M2 = 0, N2 = 0 and H2 = 0, y = ±b. For the same reason, on the side x = L,
we have M1 = 0 and N1 + ∂H1/∂y = P(y). For simplicity, we assume that q(x, y) = q(x, −y) for all x
and y. Because of this assumption, it is sufficient to consider a half of the plate, say the one with
positive y. Then the boundary conditions on the line y = 0 are the standard symmetry conditions.
On the clamped edge, the deflection and the deflection slope vanish.

The deflection w(x, y) is the solution of the Germain equation

�2w(x, y) = q(x, y)
D

, 0< x< L, 0< y< b, (4.4)

subject to the boundary conditions

∂w
∂y

= 0,
∂3w
∂y3 = 0, y = 0, 0< x< L,

w = 0,
∂w
∂x

= 0, x = 0, 0< y< b,

∂2w
∂y2 + ν

∂2w
∂x2 = 0,

∂3w
∂y3 + (2 − ν)

∂3w
∂x2∂y

= 0, y = b, 0< x< L

and
∂2w
∂x2 + ν

∂2w
∂y2 = 0,

∂3w
∂x3 + (2 − ν)

∂3w
∂x∂y2 = −P(y)

D
, x = L, 0< y< b.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.5)

To satisfy the fifth assumption of the model, we impose the inextensibility condition
∫ x̃(y)

0

√
1 + w2

x(x, y) dx = L, 0< y< b. (4.6)

The function x̃(y) ∈ (0, L) is to be determined by inversion of the integral in (4.6).

(b) Singular integral equation with fixed singularities
The approach we aim to apply is based on the method of integral transforms and eventually
leads to a single integral equation. It is convenient to apply the finite cosine integral transform
with respect to y

wn(x) =
∫ b

0
w(x, y) cosβny dy, w(x, y) = w0(x)

b
+ 2

b

∞∑
n=1

wn(x) cosβny, (4.7)

βn = πn/b, and introduce a new function

χ (x) = ∂w
∂y

(x, b), 0< x< L. (4.8)

It is possible to establish a priori that

χ (0) = χ ′(0) = 0 and χ (L) = χ ′(L) = 0. (4.9)

To do this, we consider two auxiliary bending problems for a quarter plane, problems 1 and 2.
In the former problem, one side is clamped, and the second one is free of forces and moments.
In problem 2, both sides are free of forces and moments. These two problems admit closed form

 on October 21, 2014rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


13

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20140064

...................................................

solutions by the Mellin transform, which imply the relations (4.9). Using this result, we can show
that the integral transform (4.7) maps problems (4.4) and (4.5) into the following one-dimensional
boundary value problem:(

d4

dx4 − 2β2
n

d2

dx2 + β4
n

)
wn(x) = (−1)n[β2

nχ (x) − νχ ′′(x)] + qn(x)
D

, 0< x< L,

wn(0) = 0, w′
n(0) = 0

and w′′
n(L) − νβ2

nwn(L) = 0, w′′′
n (L) − (2 − ν)β2

nw′
n(L) = −Pn

D
,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.10)

where

qn(x) =
∫L

0
q(x, y) cosβny dy and Pn =

∫L

0
P(y) cosβny dy. (4.11)

Note that on applying the cosine transform, we integrated by parts and used both boundary
conditions on the side y = 0 in (4.5) and only the second boundary condition on the side y = b.
The first condition, M2 = 0, will be later used for deriving a governing integral equation for the
unknown function χ (x). Using the fundamental function of the differential operator in (4.10) and
the boundary conditions, we derive the Green function

Gn(x, ξ ) = 1 + βn|x − ξ |
4β3

n
e−βn|x−ξ | −

[
1 + βnξ

β2
n

ψ0n(x) + ξψ1n(x)
]

e−βnξ

4βn

+
{

1 + ν − βn(1 − ν)(L − ξ )
βn

ψ2n(x) − [2 + βn(1 − ν)(L − ξ )]ψ3n(x)
}

e−βn(L−ξ )

4
. (4.12)

Here,

ψ0n(x) = 1
δn

{[5 + 2ν + ν2 + 2β2
n(ν − 1)2L(L − x)] coshβnx − (ν − 1)

× [(ν + 3) coshβn(2L − x) + βn(ν + 3)x sinhβn(2L − x) − βn(ν − 1)(2L − x) sinhβnx]},

ψ1n(x) = 1
βnδn

{−βn(ν − 1)(ν + 3)x coshβn(2L − x) + βn(ν − 1)2x coshβnx

+ 2[2(ν + 1) + β2
n(ν − 1)2L(L − x)] sinhβnx},

ψ2n(x) = − 1

β2
nδn

{2βn coshβnL[βn(ν − 1)Lx coshβnx + (L − Lν − 2x) sinhβnx]

+ 2 sinhβnL[βn(ν + 1)x coshβnx − (ν + 1 + β2
n(ν − 1)Lx) sinhβnx]},

ψ3n(x) = 1

β3
nδn

{2 coshβnL[2βnx coshβnx + (−2 + β2
n(ν − 1)Lx) sinhβnx]

− 2βn sinhβnL[βn(ν − 1)Lx coshβnx + (L − Lν + x + νx) sinhβnx]}
and δn = 5 + 2β2

n(ν − 1)2L2 + ν(ν + 2) − (ν − 1)(ν + 3) cosh 2βnL.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.13)
With the Green function at hand, we can now write down the solution to the boundary value
problem (4.10)

wn(x) =
∫L

0
Gn(x, ξ )

{
(−1)n[β2

nχ (ξ ) − νχ ′′(ξ )] + qn(ξ )
D

}
dξ − Pn

D
ψ3n(x). (4.14)

Integration by parts transforms this formula into a new form more efficient for our purposes

wn(x) = (−1)n+1
∫L

0
G̃n(x, ξ )χ ′(ξ ) dξ + 1

D

∫L

0
Gn(x, ξ )qn(ξ ) dξ − Pn

D
ψ3n(x), (4.15)
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where

G̃n(x, ξ ) = e−βn|x−ξ |

4β2
n

[2 sgn(x − ξ ) + βn(1 − ν)(x − ξ )] +
{
ψ0n(x)
βn

[2 + βn(1 − ν)ξ ]

+ψ1n(x)[1 + ν + βn(1 − ν)ξ ]
}

e−βnξ

4βn
− {ψ2n(x)(1 − ν)(L − ξ )

+ ψ3n(x)[3 + ν + βn(1 − ν)(L − ξ )]}βn(1 − ν) e−βn(L−ξ )

4
. (4.16)

The inverse cosine transform (4.7) of the function (4.15) defines the deflection w(x, y). It is directly
verified that the solution found solves equation (4.4) and meets all the boundary conditions
(4.5) except for wyy + νwxx = 0, y = b, 0< x< L. Employing formulae (4.15) and (4.7) maps this
boundary condition into an integral equation. Denote

ψ̂jn(x) = β2
nψjn(x) − νψ ′′

jn(x). (4.17)

Then the integral equation can be written as

∫L

0
χ ′(ξ )

∞∑
n=0

μnĜn(x, ξ ) dξ = f̂ (x), 0< x< L, (4.18)

where

μn =
{

1, n = 0,

2, n = 1, 2, . . .

and f̂ (x) = 1
D

∞∑
n=0

μn

(−1)n

{∫L

0

[
β2

nGn(x, ξ ) − ν
∂2Gn(x, ξ )

∂x2

]
qn(ξ ) dξ − ψ̂3n(x)Pn

D

}
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.19)

We wish to split the function Ĝn(x, ξ ) = β2
nG̃n(x, ξ ) − ν∂2G̃n/∂x2(x, ξ ) into two parts

Ĝn(x, ξ ) =Φn(x − ξ ) + Fn(x, ξ ). (4.20)

It will be shown that the functionΦn(x − ξ ) generates a Cauchy-type singular kernel, whereas the
second function, Fn(x, ξ ), generates a kernel with fixed singularities at the points x = ξ = 0 and
x = ξ = L. These functions take the form

Φn(x − ξ ) = 1 − ν

4
e−βn|x−ξ |[2(1 + ν) sgn(x − ξ ) + βn(1 − ν)(x − ξ )] (4.21)

and

Fn(x, ξ ) =
{
ψ̂0n(x)[2 + βn(1 − ν)ξ ] + βnψ̂1n(x)[1 + ν + βn(1 − ν)ξ ]

} e−βnξ

4β2
n

− 1
4

{
ψ̂2n(x)(1 − ν)(L − ξ ) + ψ̂3n(x)

× [3 + ν + βn(1 − ν)(L − ξ )]
}
βn(1 − ν) e−βn(L−ξ ). (4.22)

To understand the structure of the kernel of the integral equation (4.18), we summarize the series.
It is helpful to have the following formulae:

∞∑
n=0

μn e−nx = coth
x
2

,
∞∑

n=0

μnn e−nx = 1

2 sinh2(x/2)

and
∞∑

n=0

μnn2 e−nx = coth(x/2)

2 sinh2(x/2)
, x> 0.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.23)
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For the first part of the kernel, we discover

∞∑
n=0

μnΦn(x − ξ ) = 1 − ν2

2
coth

π (x − ξ )
2b

+ π (1 − ν)2(x − ξ )

8b sinh2(π/2b)(x − ξ )
. (4.24)

It is seen that up to a regular function, it coincides with the Cauchy kernel,

∞∑
n=0

μnΦn(x − ξ ) ∼ b(3 + ν)(1 − ν)
2π (x − ξ )

, x → ξ . (4.25)

Analyse next the second part of the kernel generated by the functions F̂n(x, ξ ) (n = 0, 1, . . .). For all
x and ξ not simultaneously close to L,

∞∑
n=0

μnFn(x, ξ ) = (1 + ν)2

2
coth

π (x + ξ )
2b

+ π (1 − ν)[(3 + ν)x + (1 + 3ν)ξ ]

8b sinh2(π/2b)(x + ξ )

+ π2(1 − ν)2xξ coth(π/2b)(x + ξ )

4b2 sinh2(π/2b)(x + ξ )
+ F̂(x, ξ ), (4.26)

where F̂(x, ξ ) is an exponentially convergent series for 0 ≤ x ≤ L − ε1, 0 ≤ ξ ≤ L − ε2, ε1 and ε2 are
positive numbers. Hence, in a neighbourhood of the point x = ξ = 0,

∞∑
n=0

μnFn(x, ξ ) ∼ b
2π (x + ξ )3 [(5 + 2ν + ν2)x2 + (3 + 6ν − ν2)ξ2 + 4(3 + ν2)xξ ]. (4.27)

A similar analysis can be implemented to recover the fixed singularity of the kernel at the point
x = ξ = L. We have the representation

∞∑
n=0

μnFn(x, ξ ) = 1 − ν2

2
coth

π (x1 + ξ1)
2b

+ π (1 − ν)2[(3 + ν)x1 + (1 + 3ν)ξ1]

8b(3 + ν) sinh2(π/2b)(x1 + ξ1)

+ π2(1 − ν)3x1ξ1 coth(π/2b)(x1 + ξ1)

4b2(3 + ν) sinh2(π/2b)(x1 + ξ1)
+ F̃(x, ξ ) (4.28)

valid for all x and ξ not simultaneously close to 0. Here, ξ1 = L − ξ , x1 = L − x and F̃(x, ξ ) is
an exponentially convergent series for ε1 ≤ x ≤ L, ε2 ≤ ξ ≤ L and εj > 0, j = 1, 2, respectively. In
a neighbourhood of the point x = ξ = L, we derive

∞∑
n=0

μnFn(x, ξ ) ∼ b(1 − ν)
2π (3 + ν)(x1 + ξ1)3 [(3 + ν)2x2

1 + (7 + 10ν − ν2)ξ2
1 + 4(5 + 2ν + ν2)x1ξ1]. (4.29)

The three relations (4.25), (4.27) and (4.29) when combined with (4.18) and (4.20) amount to the
singular integral equation with fixed singularities at both ends of the interval [0, L]

∫L

0

[
1

x − ξ
+ a0x2 + a1xξ + a2ξ

2

(x + ξ )3 + (L − x)2 + b1(L − x)(L − ξ ) + b2(L − ξ )2

(2L − x − ξ )3 + K(x, ξ )

]

× χ ′(ξ ) dξ = f (x), 0< x< L, (4.30)

where K(x, ξ ) is a regular kernel having a series representation whose rate of convergence is
exponential,

a0 = 5 + 2ν + ν2

(3 + ν)(1 − ν)
, a1 = 4(3 + ν2)

(3 + ν)(1 − ν)
, a2 = 3 + 6ν − ν2

(3 + ν)(1 − ν)

b1 = 4(5 + 2ν + ν2)
(3 + ν)2 , b2 = 7 + 10ν − ν2

(3 + ν)2 , f (x) = 2π f̂ (x)
b(3 + ν)(1 − ν)

.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.31)
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Table 1. The parametersα andβ for some values of the Poisson ratio ν .

ν 0.01 0.05 0.3 0.5

α 0.317073 0.147175 + i0.109710 0.0686975 + i0.438577 0.0350687 + i0.602019
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

β 0.637838 0.655177 0.756883 0.831474
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(c) Solution of the integral equation
The integral equation derived in §4b does not admit a closed form solution. An approximation
solution can be derived by the method of collocation or the method of orthogonal polynomials.
For both methods, it is essential to study the behaviour of the unknown function χ ′(x) at the ends
x = 0 and x = L. First, we analyse the two integrals

I0(x) = 1
π

∫L

0

[
1

x − ξ
+ a0x2 + a1xξ + a2ξ

2

(x + ξ )3

]
ξα dξ (4.32)

as x → 0+ and

I1(x) = 1
π

∫L

0

[
1

x − ξ
+ (L − x)2 + b1(L − x)(L − ξ ) + b2(L − ξ )2

(2L − x − ξ )3

]
(L − ξ )β dξ (4.33)

as x → L−. It is an easy matter to deduce from equation (4.30) that α and β are not integer. For
α 	= 0, ±1, . . .,

1
π

∫L

0

ξα dξ
x − ξ

= cotπαxα + φ0(x), x → 0+

and
1
π

∫L

0

ξα+2 dξ
(x + ξ )3 = − (α + 1)(α + 2)xα

2 sinπα
+ φ1(x), x → 0+.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.34)

On employing these relations, we obtain

I0(x) = xα

sinπα

[
cosπα + 2(1 − ν)(α + 1)2

3 + ν
− 4 + (1 + ν)2

4 − (1 + ν)2

]
+ φ2(x), x → 0+. (4.35)

Here and in (4.34), φj(x) (j = 0, 1, 2) are functions bounded in a neighbourhood of the point x = 0,
and φj(x) = o(xα), x → 0+. It follows from the integral equation (4.30) and the asymptotic relation
(4.35) that χ ′(x) ∼ A0xα as x → 0+, and α is the root of the transcendental equation

cosπα + 2(1 − ν)(α + 1)2

3 + ν
− 4 + (1 + ν)2

4 − (1 + ν)2 = 0 (4.36)

whose real part is positive and the smallest among the real parts of all roots of the equation lying
in the half-plane Re α > 0. By denoting p = α + 1, we deduce the equation that coincides with
the equation for a wedge plate with free-clamped mixed boundary conditions analysed by the
separation of variables method by Uflyand [13]. It turns out that in the strip 0<Re α < 1, there is
only one root of equation (4.36), α= α1 + iα2, and 0<α1 <

1
2 (table 1).

A similar analysis implemented in a neighbourhood of the point x = L shows that χ ′(x) ∼
A1(L − x)β , x → L− and β cannot be integer. For the integral I1(x), we have

I1(x) = −2(L − x)β

sinπβ

[
cos2 πβ

2
−
(

1 − ν

3 + ν

)2
(β + 1)2

]
+ φ3(x), x → L−, (4.37)

where φ3(x) is a function bounded in a neighbourhood of the point x = L, and φ3(x) = o((L − x)β ),
x → L−. The parameter β solves the equation

cos2 πβ

2
−
(

1 − ν

3 + ν

)2
(β + 1)2 = 0, (4.38)
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Re β > 0 and Re β is the smallest among the real parts of all the roots in the half-plane Re β > 0.
This equation is consistent with the one obtained by Uflyand [13] for a wedge plate whose both
sides are free of moments and forces. Our numerical results show that in the strip 0<Re β < 1,
there is only one root. It is real and β ∈ ( 1

2 , 1) (table 1).
We next construct an approximate solution to the integral equation (4.30). Because of the

asymptotics at the ends, the function χ ′(Lx) admits the expansion

χ ′(Lx) = xα(1 − x)β
∞∑

m=0

cmPα,β
m (1 − 2x), (4.39)

where Pα,β
m (x) are the Jacobi polynomials, and cm are complex coefficients to be determined. To

find the coefficients cm, we employ the collocation method. Upon substituting expansion (4.39)
into the integral equation (4.30), we derive

∞∑
m=0

[Sm(x) + Jm(x) + Km(x)]cm = f (Lx), 0< x< 1, (4.40)

where

Sm(x) =
∫ 1

0
ξα(1 − ξ )βPα,β

m (1 − 2ξ )
dξ

x − ξ
,

Jm(x) = a0x2Hα,β,0
m (x) + a1xHα,β,1

m (x) + a2Hα,β,2
m (x) + (−1)m[(1 − x)2Hβ,α,0

m (1 − x)

+ b1(1 − x)Hβ,α,1
m (1 − x) + b2Hβ,α,2

m (1 − x)],

Hα,β,γ
m (x) =

∫ 1

0
ξα(1 − ξ )βPα,β

m (1 − 2ξ )
ξγ dξ

(x + ξ )3

and Km(x) = L
∫ 1

0
ξα(1 − ξ )βPα,β

m (1 − 2ξ )K(Lx, Lξ ) dξ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.41)

The integral Km(x) is regular and can be evaluated by standard quadrature formulae. The other
two integrals, Sm(x) and Jm(x), are singular. On using the Mellin convolution theorem and the
theory of residues [14,15], we express the integral Sm(x) through the hypergeometric function

Sm(x) = π cotπαxα(1 − x)βPα,β
m (1 − 2x) − Γ (α)Γ (β + m + 1)

Γ (α + β + m + 1)
F

(
m + 1, −α − β − m

1 − α; x

)
(4.42)

and the integral Hα,β,γ
m (x) through the generalized hypergeometric functions

Hα,β,γ
m (x) = Γ (β + m + 1)(3 − γ )mΓ (α + γ − 2)

m!Γ (α + β + γ + m − 1) 3F2

(
3, 3 − γ + m, 2 − α − β − γ − m

3 − γ , 3 − α − γ ; −x

)

+ (α + 1)mΓ (2 − α − γ )Γ (1 + α + γ )
2m!x2−α−γ 3F2

(
α + m + 1,α + γ + 1, −β − m

α + 1,α + γ − 1; −x

)
. (4.43)

To compute the coefficients Jm, we need Hα,β,γ
m for γ = 0, 1, 2 only. For integer γ , it is possible to

express the generalized hypergeometric functions 3F2 in (4.43) through the function F. In view of
formulae 7.512(12) and 9.111 in [16], we deduce

3F2

(
a, b, c

d, c − γ ; −x

)
= Γ (c − γ )γ !
Γ (b)Γ (c)Γ (c − b − γ )

×
γ∑

j=0

Γ (c − b − γ + j)Γ (b + γ − j)
(γ − j)!j!

F

(
a, b + γ − j

d; −x

)
. (4.44)
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To compute the hypergeometric function in (4.44) for x close to 1, we can employ formula 9.131(1)
in [16] that yields

F

(
a, b + γ − j

d; −x

)
= (1 + x)−aF

⎛
⎝a, d − b − γ + j

d;
x

(x + 1)

⎞
⎠ . (4.45)

We next discretize the functional equation (4.40) using a uniform mesh

N∑
m=0

[Sm(xn) + Jm(xn) + Km(xn)]cm = f (Lxn), n = 0, 1, . . . , N, (4.46)

where xn = n/N. The solution of this system of linear algebraic equations approximately defines
the coefficients cm and therefore approximates the function χ ′(Lx)

χ ′
N(Lx) = xα(1 − x)β

N∑
m=0

cmPα,β
m (1 − 2x). (4.47)

The final step in the procedure is to fulfil condition (4.6) which guarantees that the plate does
not extend in the y-direction and determines the function x̃(y). The derivative wx(x, y) in (4.6) is
expressed through the function χ ′

N(ξ ) as

wx(x, y) = 1
b

∞∑
n=0

μn cosβny

×
[

(−1)n+1
∫L

0

∂G̃n(x, ξ )
∂x

χ ′
N(ξ ) dξ + 1

D

∫L

0

∂Gn(x, ξ )
∂x

qn(ξ ) dξ − Pn

D
ψ ′

3n(x)

]
. (4.48)

5. Conclusion
We have revised the Frisch-Fay problem for the static nonlinear elastica model when bending
does not alter the beam length, L, the beam rigidity is a piecewise constant function and loading
is a set of normal concentrated loads. We have converted the problem into a system of 2n − 1
recurrence relations involving elliptic functions and then to a single transcendental equation
solved numerically. It is known that the elastica model cannot be generalized to the case of a
continuous load, needless to say to the dynamic case or bending of a bounded plate. We have
proposed a nonlinear model for bending of a beam that comprises the standard boundary value
problem for the linear EB equation and the nonlinear condition

∫L

0

√
1 + [w′(x)]2 dx = L̃, (5.1)

where L̃ is a prescribed parameter, L ≤ L̃< L∗, and L∗ is the deflected beam length computed by
the linear EB model. If bending does not alter the beam length, then L̃ = L. The solution of this
nonlinear problem has been found explicitly for any load, and the final transcendental equation is
equivalent to inversion of an integral. In the case when the load is applied to the free end only, one
needs to invert an elliptic integral. The numerical results for the deflection, bending moment and
the shape of the deflected beam corresponding to the nonlinear EB model are in good agreement
with the results of the elastica model, and both models are more accurate than the elementary
linear EB model. Based on our static nonlinear model, we have proposed its dynamic version and
derived its exact solution. In addition, we have analysed bending of a rectangular Kirchhoff plate.
One of its sides is clamped and the others are free of forces and moments. Although the governing
equation, the Germain equation and the boundary conditions are linear, the model is nonlinear
due to the nonlinear inextensibility condition. The problem has been reduced to a singular integral
equation with two fixed singularities. We have examined the singularities of the solution of the
equation, χ ′(x) = (∂2/∂x∂y)w(x, b) (w is the deflection) and shown that in a neighbourhood of the
clamped edge x = 0 the solution oscillates and vanishes, while in the vicinity of the free end
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x = b the function χ ′(x) is monotonically decaying to zero. An approximate solution has been
derived by expanding χ ′(x) in terms of the Jacobi polynomials with a weight and employing the
collocation method. As in the one-dimensional models, the final step of the procedure is to verify
that bending does not alter the plate length, L. This condition is the two-dimensional counterpart
of the transcendental equation in the nonlinear EB beam model.
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